🎤 爲偶像應援 · Gate送你直達 Token of Love! 🎶
家人們,現在在Gate廣場爲 打 Token of Love CALL,20 張音樂節門票等你來瓜分!🔥
泫雅 / SUECO / DJ KAKA / CLICK#15 —— 你最期待誰?快來一起應援吧!
📌 參與方式(任選,參與越多中獎幾率越高!)
1️⃣ 本帖互動
點讚 & 轉發本帖 + 投票你最愛的藝人
評論區打出 “我在 Gate 廣場爲 Token of Love 打 Call !”
2️⃣ 廣場發帖爲 TA 打 Call
帶上 #歌手名字# + #TokenOfLove#
發帖內容任選:
🎵 最想現場聽到的歌 + 心情宣言
📣 應援口號(例:泫雅女王衝鴨!Gate廣場全員打 Call!)
😎 自制表情包/海報/短視頻(加分項,更容易中獎!)
3️⃣ 推特 / 小紅書發帖打 Call
同樣帶上 #歌手名字# + #TokenOfLove#
內容同上,記得回鏈到表單 👉️ https://www.gate.com/questionnaire/7008
🎟️ 獎勵安排
廣場優質發帖用戶:8張門票
廣場幸運互動用戶:2張門票
Twitter 優質發帖用戶:5張門票
小紅書優質發帖用戶:5張門票
📌 優質帖文將根據文章豐富度、熱度、創意度綜合評分,禁止小號水貼,原創發帖更易獲獎!
🕒 8
AI“下沉”之後,才是Web3大顯身手的時候?
作者:Haotian
最近觀察 AI 行業,發現個越來越「下沉」的變化:從原先拼算力集中和「大」模型的主流共識中,演變出了一條偏向本地小模型和邊緣計算的分支。
這一點,從 Apple Intelligence 覆蓋 5 億設備,到微軟推出 Windows 11 專用 3.3 億參數小模型 Mu,再到谷歌 DeepMind 的機器人「脫網」操作等等都能看出來。
會有啥不同呢?雲端 AI 拼的是參數規模和訓練數據,燒錢能力是核心競爭力;本地 AI 拼的是工程優化和場景適配,在保護隱私、可靠性和實用性上會更進一步。(主要通用模型的幻覺問題會嚴重影響垂類場景滲透)
這其實對 web3 AI 會有更大的機會,原來大家拼「通用化」(計算、數據、算法)能力時自然被傳統 Giant 大廠壟斷,套上去中心化的概念就想和谷歌、AWS、OpenAI 等競爭簡直癡人說夢,畢竟沒有資源優勢、技術優勢,也更沒有用戶基礎。
但到了本地化模型 + 邊緣計算的世界,區塊鏈技術服務面臨的形勢可就大爲不同了。
當 AI 模型運行在用戶設備上時,如何證明輸出結果沒有被篡改?如何在保護隱私的前提下實現模型協作?這些問題恰恰是區塊鏈技術的強項...
有注意到一些 web3 AI 相關新項目,諸如最近由 Pantera 零投 10M 的@Gradient_HQ推出的數據通信協議 Lattica,來解決中心化 AI 平台的數據壟斷和黑箱問題;@PublicAI_腦電波設備 HeadCap採集真實人類數據,構建「人工驗證層」,已經實現了 14M 的收入;其實,都在嘗試解決本地 AI 的「可信性」問題。
一句話:只有當 AI 真正「下沉」到每個設備時,去中心化協作才會從概念變成剛需?
#Web3AI 項目與其繼續在通用化賽道裏內卷,不如認真思考怎麼爲本地化 AI 浪潮提供基礎設施支持?